منابع مشابه
Some Complements to the Lazard Isomorphism
Lazard showed in his seminal work [L] that for rational coefficients continuous group cohomology of p-adic Lie-groups is isomorphic to Lie-algebra cohomology. We refine this result in two directions: firstly we extend his isomorphism under certain conditions to integral coefficients and secondly, we show that for algebraic groups, his isomorphism can be realized by differentiating locally analy...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولSome cyclic covers of complements of arrangements
Motivated by the Milnor fiber of a central arrangement, we study the cohomology of a family of cyclic covers of the complement of an arbitrary arrangement. We give an explicit proof of the polynomial periodicity of the Betti numbers of the members of this family of cyclic covers.
متن کاملSome inequalities on generalized Schur complements
This paper presents some inequalities on generalized Schur complements. Let A be an n n (Hermitian) positive semide®nite matrix. Denote by A=a the generalized Schur complement of a principal submatrix indexed by a set a in A. Let A be the Moore± Penrose inverse of A and k A be the eigenvalue vector of A. The main results of this paper are: 1. k A a0P k A=a, where a0 is the complement o...
متن کاملSome Algebraic Properties of Maxwell-Dirac Isomorphism
On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition “no derivative works”). This is to allow reuse in the area of future scientific usage. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2010
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x10004884